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ON OPTIMAL PLASTIC ANISOTROPY* 

N.V. BANICHUK and V.V. KOBELEV 

An approach is developed for the optimal design of a structure, based on 
optimization of the anisotropic plastic properties of materials. Problems 
of maximizing the ultimate plastic rupture load as a result of optimal 
orientation of the plastic anisotropy axes in the structure elements are 
formulated. Necessary conditions are presented for optimality in the 
three-dimensional problem of the theory of ultimate plastic equilibrium. 
Cases of the torsion and bending of plastic rods are considered. The 
bilateral achievable estimates of the ultimate loads are obtained. It 
is noted that the conditions for achieving the upper and lower bounds 
agree with the necessary optimality conditions. It is proved that the 
maximum ultimate load is realized in the case when the direction with 
the greatest yield point of the material agrees with the direction given 
by the tangential stress vector at the time of exhaustion of the carrying 
capacity. 

1. Formulation of the problem. Optimality conditions. We consider a deformable 
body that occupies a domain Q with boundary p. The body material is considered to be ideally 
elastic-plastic. The flow state occurs at a certain point if the flow condition 

&? (Oij9 k, < O (I.11 

is satisfied with the equality sign (g = 0). If g< 0 then the material behaves elastically. 
Here k is the plasticity constant, g is a given function , and cij are stress tensor components 
The equation g(cij, k) =0 in the stress space yields a family of convex surfaces enclosing 
the origin. It is assumed in the problems studied below that flow domains occur when loads 
are applied to the body. The very appearance of flow domains is considered allowable, however, 
it is required that the plastic strains should not result in exhaustion of the carrying 
capacity and to body rupture. Exhaustion of the carrying capacity is understood to be un- 
bounded growth of strains under constant loads (/l, 2/). 

To estimate the carrying capacity , the theorem on ultimate equilibrium is used, according 
to which the body sustains applied loads if a safe statically possible field of stresses uij 

exists, i.e., a stress distribution satisfying the equilibrium equations and boundary con- 
ditions 

(1.2) 
and such that 

g (aij* k, < O (1.3) 

Here niare components of the unit external normal vector to the body surface 
and p. is the part ofthebody surface on which the loads T, are given. On the rest b";"~~')' 
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surface the body is considered clamped, i.e., it is considered that the displacements are 
zero. The Roman subscripts in this section take the values 1, 2, 3 and the values 1 and 2 in 
Sects.2 and 3. Summation is over repeated subscripts and the subscript after the comma 
denotes differentiation with respect to the corresponding coordinate. 

The problem of maximization because of appropriate selection of the plastic anisotropy 
axes orientation at each point of the body can be formulated by using the theorem presented 
above /3/. 

At each point of the body let the direction of the plastic anisotropy axes be given by 
the unit 

. . . . 
vectors Jr, Jz, 33; 11, 4, i, are the directions of a global Cartesian coordinate system. 

Orientation of the plastic anisotropy axes relative to the axes of the global coordinate 
system is given by the magnitudes of the cosines of the angles between the directions j, and 
i,, i.e., by the quantities mll, = jl.i,. The matrix of the cosines is orthogonal: mijmjk = 6i,, 
where 6ik is the Kronecker delta. Since the orientation varies from point to point, the 
magnitudes of the direction cosines are functions of the coordinates. The optimization 
problem consists of seeking the orientation of the anisotropy axes, i.e., the functions 

mlk (da from the condition for the maximum of the ultimate load maximum 

P* =maxP lmij) (1.4) 
mij 

upon compliance with the condition (l.l), where in (L.2) 

qi = pQi", Ti = pTi” (1.5) 

and Ti”, qi” are given functions. Unlike (1.31, inequality (1.1) is not strict. Let us give 
this substitution a foundation. We note first that the set of values of Uij satisfying 
conditions (1.2) and (1.3) is not closed. This circumstance makes an incorrect formulation 
of the optimization problem (1.2)-(1.4). 

We will use the following natural method for regularization. We consider two nearby flow 
surfaces corresponding to the initial parameter k and differing only slightly in themagnitude 
of the parameter k,, k>k,. The difference k-k, = e>O can be considered as small as 
desired. Ry using geometric representations about the flow surfaces it can be noted that for 
statically allowable stress fields satisfying the inequality g(oij, kg),< 0 and (1.2), satis- 
faction of the strict inequality (1.3) would also be ensured. Consequently, such fields are 
safe statically allowable fields for the original flow surface. 

The solution of the optimization problem can be determined as accurately as desired by 
giving a sufficiently small value of s and replacing condition (1.3) by (1.1) in (1.2)-(1.3). 
Application of this method, based on the introduction of a modified flow surface, is also 
justified from the viewpoint that in practice the constant k is always determined with a 
certain error. Later we assume a plasticity criterion in the form of a quadratic function of 
the stresses /4/ 

g(Uij, k)= oijBijk[okl -k,<O, Bijkl=Bkiij=Bjikl 

Let us derive the optimality conditions for problem (l.l), (1.4) and (1.5). We will 
write the relation between the components of the tensor Bijk[ and the plastic constants tensor 
in the principal axes bijkl, as well as the expression for the variations GBijkL due to the 
variation Smi j of the cosines mij 

Hijkl = bp.&%pmjpmk,,mls (1.6) 

SBijkl = 4~ij~,Vl,p6~~p~ 

Representing the functional being optimized in the form 

P= &* PdQ, p,i=o 
,s 

(1.7) 

and taking account of (1. I), (1.41, (1.5) and (1.7), we form the Lagrange functional 

J=~SPdCl+Srli(Uij,j+Qi)dS1+ 
n R 

d 
’ A @ + $) dQ + 

a 

%l lmfkmkj - hj) dQ 

(1:8) 

To obtain the variations of the Lagrange functional (1.81, we vary the tensor Bijkl. We 
use the relationship (1.61, the boundary conditions from (1.5) and we take into account that 
the variations of p in (1.8) are independent of the space coordinates since p,i = 0. We 
define the conjugate variables I$~ as functions satisfying the following differential equations 
and boundary conditions 
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(1.9) 

Moreover, we assume that h and p are subject to additional non-stiffness conditions 

+=O in 52 (1.10) 

Using (1.9)-(1.10) and the requirement 6J = 0, we obtain the optimality condition in 
the form 

\ (hcijBijk,cl, + qks) %$mpk d8 = 0 
n 

which by virtue of the symmetry 11~ J = n8k and arbitrariness of 6m,k reduces to the relation- 
ship 

(JijBijkPia =cijB<j,~lh (1.11) 

If B is the plastic constants tensor with components Bilklt and a is the stress tensor, 
then the last equality is written in the symmetric form 

e..B.s=e.B..o (1.12) 

The one and two dots between the symbols in (1.12) denote the simple and double scalarproduct. 

2. Optimal orientation of the plastic anisotropy axes in a twisted rod. 
Let us consider the torsion of a cylindrical rod subjected to moments applied to its ends. 
We assume that the transverse section of the rod S is a simply-connected domain. The zg axis 
of the x1x2x3 orthogonal coordinate system is oriented in the direction of the cylinder 
generator, while the z,and 2% axes in the plane of the transverse section. The lateral sides 
of the rod are load-free. It is also assumed that the material is continuously inhomogeneous 
and has a plane of elastic symmetry normal to the generator (the I% axis) at each point. The 
material is orthotropic at each point, where the two orthotropy axes are in the plane of the 
transverse section and their orientation is independent of the coordinate zg. Under torsion 
the two stress tensor components Tr5(x1, z,), %s (z,, XI) (% = 0183 G = %) are different from zero. 
The torque is expressed in terms of the stress tensor components as follows: 

M=S( T2X1- T1X2)dS (2.1) 
s 

We write the equilibrium equation and boundary conditions 

Tl.1 + %.2 = 0 on s (2.2) 
rlnl + 't2n2 = 0 On as 

(as is the boundary of the domain S). Since only two stress tensor components are not zero, 
the plasticity condition is rewritten in the abbreviated form 

The notation (indicated in the parentheses) for the anisotropy parameters calculated in 
the global coordinate system x1x2x3 

. 
with directions lr, 2, i i, is introduced here. These 

quantities are functions of the coordinates and depend on the orientation of the anisotropy 
axes in the plane of the section. 

In addition to the xlxexg coordinate system, we introduce a local y&y, coordinate 
system whose directions jl,jZ,jg agree at each point with the direction of the anisotropy axes 
of the material. The x3 axis is parallel to the y, axis and the angle between the y,and x1 
axes is denoted by a (x1, 4). The flow condition in the y&y, coordinate system is also a 
quadratic form of the stress, where the parameters bij characterizing the running state of the 
anisotropy in the y,y,y, coordinate system are independent of the point coordinates and are 
constants. These quantities are expressed in terms of the flow limits T~~,Tz~ for a shift 
with respect to the principal anisotropy axes b,, = l/z,“, b,, = I/T,~; b,, = 0 (z,".> z,"). Note that 
the coefficients b,j are components of a symmetric positive-definite matrix. If the rotation 
matrix m (a) with components m,, = maa = cos a, m,, = - rnzl = sin a is introduced, then the 
relation between the coefficients Bijand bit can be represented in the form 

B~J = mikmj&kl 

We express the stress tensor components in terms of the stress function Y(z,, 52) 

Q = Y,,, z2 = -Y'.r (2.4) 

As is known, the equilibrium equations are satisfied identically when (2.4) is substituted 
into (2.2) andthe,boundary condition reduces to the function Y being zero on the boundary. 

The plasticity condition (2.3) is rewritten in the form 
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A,,Y,Y,, = VY.A.VY,<k 
A=B-LIBI=IbI(m.b.m*)-', m.m* =E 

The ultimate torque equals the extremal value of the functional 

M=Zlnax YdS s 'YEDa 

(2.5) 

(2.“) 

in the set 
D -= (Y: VY.A.VY < k, Y Ias = 0) 

If the plasticity function Y belongs to the set D, then the equilibrium and plasticity 
conditions are satisfied. The optimization problem formulated in Sect.1 for the three- 
dimensional problem becomes the following for the specific case of the state of stress: 
determine the optimal orientation of the anisotropy axis from the condition for the maximum 
of the ultimate torque 

max M 
a@,, 51) 

(2.7) 

The necessary optimality conditions can be obtained directly from (1.12) 
notation used here these equations are rewritten in the form 

(%,r, + &,r,) r2 = (B,,r1 + &,r,) 71 

In the 

and are satisfied identically if 

B,,r, -t B,,r, = Azr, B,,T, + B,,T, = AT, 

Relying on relationships (2.4) and (2.5) we convert (2.8) to the form 

A.CY = IVY, h = A 1 B ( 

(2.8) 

(2.8) 

(I B I is the determinant of the matrix B). 
Later the mechanical meaning of (2.9) will be clarified. 
Let us show thatthemaximum M of the functional is achieved when a regime corresponding 

to a large eigenvalue A is realized in the whole domain S. We introduce the following 
quantities into the analysis 

M*=2~~;h~YdS, M**=2 max SYdS 
‘YELP+ 

D* = {Y: &in (b) VY’VY < k, Y 1,: = 0) 

D** = {Y: h,,, (b) VY’VY < k, Y Jas = 0} 

(2.10) 

It can be shown that 

M**,<M<M* (2.11) 

where the lower boundary for M(infM = M**)# is achieved when the equality A.VY = lLmx (b) VY 
is satisfied in the whole domain, and the upper boundary (sup M = M*) is realized for 
A.VY = k,,,j, (b)VY. 

Indeed, by the efinition of the maximum and minimum eigenvalue 

hmi, (b) VY.V'Y< W.A.VY<~,,(~)VY.VY 

The upper inequality is given a foundation by the definition of the eigenvalues 

(2.12) 

and the chain of equalities &,,,(A) = lBl&,W= lb)&,,,,(b) = h,,(b), since &,,I, (b) &ax (b) = I b I. 

From (2.10) and (2.12) it follows that D**CDCD* and, consequently, inequlity (2.11) 
is valid. 

It therefore follows that the ultimate moment reaches a maximum when the directions 
with the highest yield at each point are in agreement with the direction of action of the 
maximum tangential stress. The torsion equation reduces to an equation describing the plastic 
torsion of isotropic rods with the yield point k. A;;llln (b). 

The theory of ultimate plastic torsion of isotropic rods has been well developed /5, 6/. 
The function Y is mapped by a ruled surface constructed on the contour, whose rectilinear 
generators are normal to the'contour line 3s and have a constant slope kG?n (b) to the 

plane of the transverse section. This is the so-called surface of equal slope @ES). The 
directionofthe maximal shear stress (and therefore of the maximal yield point in an optimal 
rod) agrees with the SES level lines. The slope of the SES in an optimal rod is proportional 
to the highest yield point. The magnitude of the ultimate moment equals twice the volume 
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included under the SES. Therefore, the geometric meaning of the inequalities (2.11) is 
evident; they express the fact that the surface corresponding to the plasticity function Y 
is included between two SES for arbitrary orientation of the anisotropy axes. 

3. Optimal orientation of the anisotropy axes for bending of a cantilever. 
The state of stress is examined in a prismatic cantilever rod loaded by surface forces dis- 
tributed over its unclamped endface. We superpose the origin on the stiffly framed left 
endface of the rod. Let the side surface of the rod be force-free , and P the principal vector 
of the surface forces on the right end (x3 = 1) directed along the x1 axis. The surface loads 
on the endface produce a moment M relative to the centre of inertia whose vector is directed 
along x2. Therefore, a transverse force P and a bending moment M act on the rod. The stress 
tensor components 'Cl, z2 and ca3 differ from zero at each section of the rod. The normal 
stress crQs is represented by the formula 

u 33 = --I-i [M + P (1 - x&r (3.1) 

and the statics equations inthevolume and on the surface are written in the form 

r1.1 + 22,2 = -i+Px, (3.2) 
21.3 = 0, =2,3 = 0, qnl + 'c2nz = 0 

(Iis the moment of inertia of a section relative to the xt axis). It is assumed that the 
transverse section has an axis of symmetry that agrees with the force line of action. An 
S,P. Timoshenko stress function Y &,x2) is introduced in terms of which the shear stresses 
are expressed. 

71 = Y,, - 'iz~-'Pslz + G (x2) 
r2 = - i+PY,, 

The boundary condition (3.2) is rewritten by using the stress function as 

aY/& = ['/,I-'Ps,2 - G (z,)lay/& 

where alas is the derivative with respect to the contour. If the function G(x,)is selected 
in such a way that the condition G(x,) = 1/,I-1Px,2 is satisfied on the contour then the 
boundary condition takes the form Y = 0. 

We will consider the-plane of the cantilever transverse section to be the plane of 
plastic symmetry. Under this assumption the plasticity condition is written in the form 

BijriTj + B,,,,e,,' <k (3.3) 

We assume that the bending moment M = -_Scs+@s and the transverse force P = s qds 

vary in proportion to one parameter. Under such a proportional loading the bending moment 
is a linear function the the transverse force M =xP (x is a quantity dependent only on the 
location of the section on the rod axis). If a stress function 'II, c% 4 exists such that 
the stresses calculated with its aid satisfy inequality (3.3) at each point, then the effective 
loads do not reach the limit values. 

The optimization problem consists of seeking a distribution of the orientation of the 
plastic anisotropy axes such thatthelimit load reaches the maximum value. 

It can be shown that the optimal orientation of the anisotropy axes is such that the 
direction of the shear stress vector {r,,'c2} acting in the plane of the rod transverse 
section will agree with the direction of the eigenvector of the matrix B corresponding to 
the smallest eigenvalue. Indeed such an orientation corresponds to the minimum value of the 
quadratic form on the left-hand side of (3.3). 
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